BackgroundRadiation therapy-related dysphagia is worsened by xerostomia. The submandibular glands (SMG) produce saliva rich in lubricating mucins, and sparing the SMG has been shown to reduce xerostomia. The goal of this study was to determine whether SMG sparing IMRT is associated with reduced post-treatment PEG dependence in locally advanced oropharynx cancer patients.MethodsPatients treated with definitive radiation therapy for oropharynx cancer were included in this retrospective study. Those with disease recurrence were excluded. Salivary glands and swallowing-related organs at risk, including pharyngeal constrictors, were contoured. Primary endpoint was time from end of radiation treatment to freedom from gastrostomy (PEG) tube dependence. Cox proportional hazards regression and logistic regression were used to assess influence of normal tissue doses on swallowing related endpoints.ResultsSixty-nine patients were included. All had stage III/IV disease and 97% received concurrent systemic therapy. Fifty-seven percent had contralateral SMG (cSMG) mean dose <50 Gy, a level shown to predict for xerostomia. Eighty four percent of patients had a PEG tube placed electively. On univariate analysis, the strongest predictor of time to freedom from PEG tube dependence was cSMG dose (HR 0.97 per Gy (95% CI 0.95–0.98), p < 0.0001). This relationship persisted on multivariate analysis (p = 0.052). The dose to superior and middle pharyngeal constrictor muscles, and larynx were also significant on univariate analysis. Patients with cSMG dose less than median (42 Gy, n = 34) had a significantly shorter time to freedom from PEG dependence: median 1.9 vs. 3.5 months, p < 0.0001. At 6 months, 3% of patients with cSMG dose < 42 Gy were PEG dependent compared to 31% with cSMG dose > 42 Gy (p = 0.002).ConclusionsPatients treated with cSMG sparing radiotherapy had significantly shorter time to PEG tube removal after treatment, suggesting a clinically meaningful reduction in subacute dysphagia compared to non-cSMG sparing treatment.
Read full abstract