The mechanistic relationships betweenthe progression of growth chondrocyte differentiation, matrix mineralization, oxidative metabolism, and mitochondria content and structure were examined in the ATDC5 murine chondroprogenitor cell line. The progression of chondrocyte differentiation was associated with a statistically significant (p ≤ 0.05)~2-fold increase in oxidative phosphorylation. However, as matrix mineralization progressed, oxidative metabolism decreased. In the absence of mineralization, cartilage extracellular matrix mRNA expression for Col2a1, Aggrecan, and Col10a1 were statistically (p ≤ 0.05)~2-3-fold greater than observed in mineralizing cultures. In contrast, BSP and Phex that are associated with promoting matrix mineralization showed statistically (p ≤ 0.05) higher ~2-4 expression, while FGF23 phosphate regulatory factor was significantly lower (~50%) in mineralizing cultures. Cultures induced to differentiate under both nonmineralizing and mineralizing media conditionsshowed statistically greater basal oxidative metabolism and ATP production. Maximal respiration and spare oxidative capacity were significantly elevated (p ≤ 0.05) in differentiated nonmineralizing cultures compared to those that mineralized. Increased oxidative metabolism was associated with both an increase in mitochondria volume per cell and mitochondria fusion, while mineralization diminishedmitochondrial volume and appeared to be associated with fission. Undifferentiated and mineralized cells showed increased mitochondrial co-localization with the actin cytoskeletal. Examination of proteins associated with mitochondria fission and apoptosis and mitophagy, respectively, showed levels of immunological expression consistent with the increasing fission and apoptosis in mineralizing cultures. These results suggest that chondrocyte differentiation is associated with intracellular structural reorganization, promoting increased mitochondria content and fusion that enables increased oxidative metabolism. Mineralization, however, does not need energy derived from oxidative metabolism; rather, during mineralization, mitochondria appear to undergofission and mitophagy. In summary, these studies show that as chondrocytes underwent hypertrophic differentiation, they increased oxidative metabolism, but as mineralization proceeds, metabolism decreased. Mitochondria structure also underwent a structural reorganization that was further supportive of their oxidative capacity as the chondrocytes progressed through their differentiation. Thus, the mitochondria first underwent fusion to support increased oxidative metabolism, then underwent fission during mineralization, facilitating their programed death.