역 사회공학 기반 스팸공격은 공격자가 직접적인 공격을 수행하는 것이 아니라 피해자가 문제 있는 사이트 주소, 문자, 이메일 수신 및 친구 수락 등을 통해 유도하기 때문에 온라인 소셜 네트워크에서 활성화되기 쉽다. 스팸 탐지 관련 기존 연구들은 소셜 네트워크 특성을 반영하지 않은 채, 관리자의 수동적인 판단 및 라벨링을 바탕으로 스팸을 정상 데이터와 구분하는 단계에 머물러있다. 본 논문에서는 소셜 네트워크 데이터 중 하나인 Twitter spam데이터 셋을 실제로 분석하고 소셜 네트워크에서 다양한 속성들을 반영하여 정상 (ham)과 비정상 (spam)을 구분할 수 있는 탐지 메트릭을 제안한다. 또한, 관리자의 관여 없이도 실시간 및 점진적으로 스팸의 특성을 학습하여 새로운 스팸에 대해서도 탐지할 수 있는 비지도 학습 기법(unsupervised scheme)을 제안한다. 실험 결과, 제안하는 기법은 90% 이상의 정확도로 정상과 스팸을 구별했고 실시간 및 점진적 학습 결과도 정확함을 보였다. Since automatic social engineering based spam attacks induce for users to click or receive the short message service (SMS), e-mail, site address and make a relationship with an unknown friend, it is very easy for them to active in online social networks. The previous spam detection schemes only apply manual filtering of the system managers or labeling classifications regardless of the features of social networks. In this paper, we propose the spam detection metric after reflecting on a couple of features of social networks followed by analysis of real social network data set, Twitter spam. In addition, we provide the online social networks based unsupervised scheme for automated social engineering spam with self organizing map (SOM). Through the performance evaluation, we show the detection accuracy up to 90% and the possibility of real time training for the spam detection without the manager.