Screen systems are often neglected in practice. This can lead to local flooding, pollution of receiving watercourses, blockages of channels by debris, and safety problems for children playing. The aim of this case study is therefore to protect below-ground channels and people, prevent flooding, improve water quality, and save personnel costs through a new screen system maintenance, repair, and upgrade methodology. The results show that repairing or enlarging the screens optimizes their functionality and reduces the risk of flooding. A particular focus is on increasing the screen dimension from one- and two-dimensional to three-dimensional screens. The new variable safety priority and the bar spacing increase with the passage area. Screens at large discharges should therefore be prioritized. Cleaning sand traps reduces the risk of pipe blockages and improves the water quality of receiving waters. Fine particles often have too high nutrient and oxygen demand values. The installation of pre-screens can increase the efficiency of the main screens. Optimization of travel routes for maintenance teams can be achieved by better planning maintenance routes. Adapting and maintaining screens to climate change by applying the novel prioritization method is likely to be successful. This should include prioritized inspections, repairs, and adjustments to screen structures.
Read full abstract