Reliable randomness is a core ingredient in algorithms and applications ranging from numerical simulations to statistical sampling and cryptography. The outcomes of measurements on entangled quantum states can violate Bell inequalities, thus guaranteeing their intrinsic randomness. This constitutes the basis for certified randomness generation. However, this certification requires spacelike separated devices, making it unfit for a compact apparatus. Here we provide a general method for certified randomness generation on a small-scale application-ready device and perform an integrated photonic demonstration combining a solid-state emitter and a glass chip. In contrast to most existing certification protocols, which in the absence of spacelike separation are vulnerable to loopholes inherent to realistic devices, the protocol we implement accounts for information leakage and is thus compatible with emerging compact scalable devices. We demonstrate a two-qubit photonic device that achieves the highest standard in randomness, yet is cut out for real-world applications. The full 94.5-h-long stabilized process harnesses a bright and stable single-photon quantum-dot-based source, feeding into a reconfigurable photonic chip, with stability in the milliradian range on the implemented phases and consistent indistinguishability of the entangled photons above 93%. Using the contextuality framework, we certify private randomness generation and achieve a rate compatible with randomness expansion secure against quantum adversaries. Published by the American Physical Society 2024