In this paper, we consider the problem of fusion of synthetic aperture radar (SAR) images from spaceborne and airborne sensors and investigate its applications to inshore ship target detection. Existing SAR image fusion methods mainly focus on image denoising or texture enhancement, but show limited improvement of target-to-clutter ratios (TCRs) in composite images and lead to deteriorated target detection performance. To address this issue, we propose a new method for the fusion of spaceborne and airborne SAR images based on the target proposal and the copula theory (TPCT). In TPCT, target and clutter correspondence between different images are exploited to improve the TCRs of composite images. TPCT consists of three steps. First, target proposals are extracted from spaceborne and airborne SAR images and then fused to enhance the common ship target areas therein. Second, a new method to construct the joint probability density function (PDF) of clutter in spaceborne and airborne SAR images is presented to model the statistical dependence of clutter therein based on the copula theory. This copula-based joint PDF is used to suppress the clutter areas remained in the intersection of target proposals. Third, clues from the intersection of target proposals and the copula-based joint PDF of clutter are fused by the Hadamard product to generate the composite image with enhanced ship targets and the suppressed clutter. Experimental results based on measured spaceborne and airborne SAR data show that the proposed TPCT fusion method leads to higher TCRs of composite images and better performance in the ship detection task than other commonly used image fusion methods.
Read full abstract