Adverse weather conditions, such as haze and raindrop, consistently degrade the quality of remote sensing images and affect subsequent vision-based applications. Recent years have witnessed advancements in convolutional neural networks (CNNs) and Transformers in the field of remote sensing image restoration. However, these methods either suffer from limited receptive fields or incur quadratic computational overhead, leading to an imbalance between performance and model efficiency. In this paper, we propose an effective vision state space model (called Weamba) for remote sensing image restoration by modeling long-range pixel dependencies with linear complexity. Specifically, we develop a local-enhanced state space module to better aggregate rich local and global information, both of which are complementary and beneficial for high-quality image reconstruction. Furthermore, we design a multi-router scanning strategy for spatially varying feature extraction, alleviating the issue of redundant information caused by repeated scanning directions in existing methods. Extensive experiments on multiple benchmarks show that the proposed Weamba performs favorably against state-of-the-art approaches.
Read full abstract