Let Φi,Ψi\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Phi _i, \\Psi _i$$\\end{document} be Young functions, ωi\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\omega _i$$\\end{document} be weights and MωiΦi,Ψi(Rd)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M^{\\Phi _i,\\Psi _i}_{\\omega _i}(\\mathbb {R} ^{d})$$\\end{document} be the corresponding Orlicz modulation spaces for i=1,2,3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$i=1,2,3$$\\end{document}. We consider linear (respect. bilinear) multipliers on Rd\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {R} ^{d}$$\\end{document}, that is bounded measurable functions m(ξ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m(\\xi )$$\\end{document} (respect. m(ξ,η)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m(\\xi ,\\eta )$$\\end{document}) on Rd\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {R} ^{d}$$\\end{document} (respect. R2d\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {R} ^{2d}$$\\end{document}) such that Tm(f)(x)=∫Rdf^(ξ)m(ξ)e2πi⟨ξ,x⟩dξ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} T_m(f)(x)=\\int _{\\mathbb {R} ^{d}}{\\hat{f}}(\\xi ) m(\\xi )e^{2\\pi i \\langle \\xi , x\\rangle }d\\xi \\end{aligned}$$\\end{document}(respect. Bm(f1,f2)(x)=∫Rd∫Rdf1^(ξ)f2^(η)m(ξ,η)e2πi⟨ξ+η,x⟩dξdη\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} B_m(f_1,f_2)(x)=\\int _{\\mathbb {R} ^{d}}\\int _{\\mathbb {R} ^{d}} \\hat{f_1}(\\xi ) \\hat{f_2}(\\eta )m(\\xi ,\\eta )e^{2\\pi i \\langle \\xi +\\eta , x\\rangle }d\\xi d\\eta \\end{aligned}$$\\end{document}define a bounded linear (respect. bilinear) operator from Mω1Φ1,Ψ1(Rd)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M^{\\Phi _1,\\Psi _1}_{\\omega _1}(\\mathbb {R} ^{d})$$\\end{document} to Mω2Φ2,Ψ2(Rd)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M^{\\Phi _2,\\Psi _2}_{\\omega _2}(\\mathbb {R} ^{d})$$\\end{document} (respect. Mω1Φ1,Ψ1(Rd)×Mω2Φ2,Ψ2(Rd)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M^{\\Phi _1,\\Psi _1}_{\\omega _1}(\\mathbb {R} ^{d})\ imes M^{\\Phi _2,\\Psi _2}_{\\omega _2}(\\mathbb {R} ^{d})$$\\end{document} to Mω3Φ3,Ψ3(Rd)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M^{\\Phi _3,\\Psi _3}_{\\omega _3}(\\mathbb {R} ^{d})$$\\end{document}). In this paper we study some properties of these spaces and give methods to generate linear and bilinear multipliers between Orlicz modulation spaces.
Read full abstract