Cesium lead bromide (CsPbBr3) is a prominent halide perovskite with extensive optoelectronic applications. In this study, we report the pressure modulation of CsPbBr3’s crystal structure and electronic properties at room temperature up to 5 GPa. We have observed a crystal structure transition from the orthorhombic Pnma space group to a new monoclinic phase in the space group P21/c at 2.08 GPa. The structure is associated with ~8% of density jump across the transition boundary. DFT calculations have suggested that the structure transition leads to a change in the electronic band structure, and there is an emergent indirect bandgap at the Pnma-P21/c phase transition boundary at 2.08 GPa. Across the transition boundary, the electronic band gap of CsPbBr3 increased from 2.07 eV to 2.38 eV, which explains its pressure-induced color change. Our study demonstrates the importance of using in-situ crystal structure in the electronic band structure calculations in halide perovskites.