Serine proteases are involved in mammalian fertilization. Inhibitors of serine proteases can be applied to investigate at which point these enzymes exert their action. We selected two serine protease inhibitors, 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF, 100 μM) and soybean trypsin inhibitor (STI, 5 μM) from Glycine max, via previous dose-response IVF experiments and sperm toxicity tests. In the present study, we evaluated how these inhibitors affect porcine fertilization in vitro as calculated on total fertilization rate, polyspermy rate, and the sperm number per fertilized oocyte of cumulus-intact, cumulus-free, and zona-free oocytes. In the control group (no inhibitor), these parameters were 86%, 49%, and 2.2 for cumulus-intact oocytes and 77%, 43%, and 2.2 for cumulus-free oocytes (6-hour gamete incubation period, 1.25 × 105 spermatozoa/mL). 4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride and STI significantly reduced total fertilization and polyspermy rate in cumulus-intact and cumulus-free oocytes (P < 0.05). Total fertilization rates were respectively 65% and 53% (AEBSF) and 36% and 17% (STI). Inhibition rates were higher in cumulus-free oocytes than in cumulus-intact oocytes, indicating that inhibitors exerted their action after sperm passage through the cumulus. 4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride but not STI reduced sperm binding to the ZP. The acrosome reaction was significantly inhibited by both inhibitors. Only 40.4% (AEBSF) and 11.4% (STI) of spermatozoa completed a calcium-induced acrosome reaction compared to 86.7% of spermatozoa in the control group. There was no effect on sperm binding or fertilization parameters in zona-free oocytes. In conclusion, sperm–zona binding and acrosome reaction were inhibited by serine protease inhibitors during porcine IVF.
Read full abstract