The population dynamics of many colonially breeding seabirds are characterized by large interannual fluctuations that cannot be explained by environmental conditions alone. This variation may be particularly confounded by the use of skipped breeding by seabirds as a life-history strategy, which directly impacts the number of breeding pairs and may affect the accuracy of breeding abundance as a metric of population health. Additionally, large fluctuations in time series may suggest that the underlying population dynamics are heavy tailed, allowing for a higher likelihood of extreme events than expected under Gaussian dynamics. Here, we investigated the effect of demography on time series for abundance of the Adélie penguin Pygoscelis adeliae and explored the occurrence of heavy-tailed dynamics in observed Adélie time series. We focus this study on the Adélie penguin as it is an important bellwether species long used to track the impacts of climate change and fishing on the Southern Ocean ecosystem and shares life-history traits with many colonial seabirds. We quantified the impacts of demographic rates, including skipped breeding, on time series of Adélie abundance simulated using an age-structured model. We also used observed time series of Adélie breeding abundance at all known Antarctic colonies to classify distributions for abundance as Gaussian or non-Gaussian heavy tailed. We then identified the cause of such heavy-tailed dynamics in simulated time series and linked these to spatial patterns in Adélie food resource variability. We found that breeding propensity drives observed breeding fluctuations more than any other vital rate, with high variability in skipped breeding decoupling true abundance from observed breeding abundance. We also found several Antarctic regions characterized by heavy-tailed dynamics in abundance. These regions were often also characterized by high variability in zooplankton availability. In simulated time series, heavy-tailed dynamics were strongly linked to high variability in adult survival. Our results illustrate that stochastic variability in abundance dynamics, particularly the presence of variable rates of skipped breeding, can challenge our interpretation of fluctuations in abundance through time and obscure the relationship between key environmental drivers and population abundance.