Sixteen sites in the watershed of the South Fork of the Broad River (SFBR) in Northeastern Georgia, USA, were sampled in two seasons to detect Campylobacter. Sites were classified as mostly influenced by forest, pasture, wastewater pollution control plants (WPC) or mixed use. Sampling was repeated in the late spring and late fall for 2years for a total of 126 samples. Free-catch water and sediment grab samples were taken at each site; Moore's swabs were placed for up to 3days at most sites. A total of 56 isolates of thermophilic Campylobacter were recovered. Thirteen samplings were positive by two or three methods, and 26 samplings were positive by only one method; once by Moore's swab only and 25 times by free-catch water only. Campylobacter was detected at 58% of cattle pasture sites, 30% of forested sites and 81% of WPC sites. Twenty-one of the isolates carried antimicrobial resistance genes, mostly blaOXA-61. Free-catch water samples were more efficient than Moore's swabs or sediment samples for recovery of Campylobacter, which was more likely to be detected in streams near cattle pastures and human communities than in forested land. SIGNIFICANCE AND IMPACT OF THE STUDY: The role of environmental water in transmitting Campylobacter was investigated, and methods for recovery of the organism were compared. The sequence types of recovered Campylobacter correlated with adjacent land use without regard to the method used to isolate the organisms. Sequence types and antimicrobial resistance genes associated with cattle were most prevalent near pastures. Even though types were recurrent at a given site, types appeared to be lost or replaced as the water flowed downstream.
Read full abstract