Our study focuses on examining the effects of treated wastewater irrigation (TWWI) on agricultural soils in water-scarce regions, with a specific emphasis on the presence and accumulation of polycyclic aromatic hydrocarbons (PAHs). This issue is particularly significant due to its potential threats to environmental security. During our research, we discovered the existence of 16 different PAHs in these soils, which are known to have harmful impacts on ecosystems and human health. The concentration of total PAHs ranged from 163.9 ng g−1 to 9177.4 ng g−1, with 4- and 5-ring PAHs being the most dominant contributors. The PAHs Fluoranthene and Pyrene were found to be the most prevalent in all soil samples. Comparing the PAH concentrations in our research area to those reported in other studies, we observed that the agricultural areas in our study were more contaminated. Through positive matrix factorization (PMF) and diagnostic ratios (DRs) analyses, we identified petroleum combustion, vehicular emissions, as well as coal, grass, or wood combustion as the primary sources of PAH contamination. We also noted a negative correlation between clay, silt, pH, and PAH concentrations, while a significant positive relationship was observed between total organic carbon (TOC), sand, and PAHs. Based on the computed environmental risk index value, the presence of PAHs in the area poses a moderate to high level of ecological risk. TWWI was identified as the main contributor to PAHs in the agricultural soils we studied. Therefore, it is crucial to establish and enforce standards for wastewater reuse in agricultural fields before irrigation takes place.
Read full abstract