Contrails form as a result of water vapor bonding with soot emitted from jet engines at cruise altitudes, leading to contrail formation in Ice Supersaturated Regions (ISSRs). Contrails are estimated to contribute approximately 2% to total anthropogenic global warming. Some researchers have developed simulation models to estimate the frequency, duration, and spatial distribution of contrails. Other researchers have identified issues with the accuracy of the data for predicting the timing and precise geographic positioning of ISSRs. This study presents a systematic review of 22 peer-reviewed articles that included detailed models of ISSR identification, identifying three atmospheric data sources, four parameters, and two equations for calculating the parameters derived. A further analysis revealed differences in the temperature and RHW readings across the three databases, resulting in differences in the RHI calculations and the identification of ISSRs. Over an 18-month period in Sterling, Virginia, USA, the radiosonde data and two atmospheric forecast databases identified the ISSR conditions on 44%, 47%, and 77% of days, respectively. Broken down by a flight level between 30,000 and 39,999 feet in altitude, these differences are highlighted further. The forecast databases overestimated the presence of ISSRs compared to the radiosonde data. These findings underscore the variability inherent in atmospheric datasets and the conversion methods, highlighting potential areas for refinement in ISSR prediction, notably in the development of ensemble forecasts based on several atmospheric databases. The implications of these results, the limitations of this study, and future work are discussed.
Read full abstract