We have examined the local control by nerve growth factor (NGF) of the outgrowth of neurites from clonal cells, PC12D, a subline whose phenotype resembles that of the parent PC12 cell line in the NGF-primed state. We show here that (i) the outgrowth of neurites and their survival can be induced by NGF in enucleated PC12D cells, (ii) individual neurites of a single ‘giant cell’, produced by cell fusion of PC12D cells, can respond independently to the NGF in the local environment, (iii) dissected neurites from giant cells survive for longer in medium that contains NGF than in medium that does not, (iv) in PC12D cells, the rapid formation of ruffles in response to NGF, which appears to be based on increased cell-substratum adhesion, leads to the subsequent formation of neurites, and (v) upon addition of NGF, the movement of short processes displaces polylysine-coated beads in the vicinity of neurites. These observations suggest that the NGF-dependent maintenance or extension of neurites might be controlled within the neurites themselves and might not require the direct involvement of the cell body, even in PC12 cells. It seems possible that any NGF-induced changes that promote an increase in cell-substratum adhesion might be responsible for the initiation and elongation of neurites. It also seems possible that the growth of neurites towards a source of NGF might be based on repeated rounds of extension and retraction of filopodia and neurites in a manner that depends on the concentration of NGF.
Read full abstract