Using synchrotron radiation, negative ions are detected by mass spectrometry following vacuum-UV photoexcitation of trifluorochloromethane (CF(3)Cl), trifluorobromomethane (CF(3)Br), and trifluoroiodomethane (CF(3)I). The anions F(-), X(-), F(2)(-), FX(-), CF(-), CF(2)(-), and CF(3)(-) are observed from all three molecules, where X = Cl, Br, or I, and their ion yields recorded in the range of 8-35 eV. With the exception of Br(-) and I(-), the anions observed show a linear dependence of signal with pressure, showing that they arise from unimolecular ion-pair dissociation. Dissociative electron attachment, following photoionization of CF(3)Br and CF(3)I as the source of low-energy electrons, is shown to dominate the observed Br(-) and I(-) signals, respectively. Cross sections for ion-pair formation are put onto an absolute scale by calibrating the signal strengths with those of F(-) from both SF(6) and CF(4). These anion cross sections are normalized to vacuum-UV absorption cross sections, where available, and the resulting quantum yields are reported. Anion appearance energies are used to calculate upper limits to 298 K bond dissociation energies for D(o)(CF(3)-X), which are consistent with literature values. We report new data for D(o)(CF(2)I(+)-F) < or = 2.7+/-0.2 eV and Delta(f)H(o)(298)(CF(2)I(+)) < or = (598+/-22) kJ mol(-1). No ion-pair formation is observed below the ionization energy of the parent molecule for CF(3)Cl and CF(3)Br, and only weak signals (in both I(-) and F(-)) are detected for CF(3)I. These observations suggest that neutral photodissociation is the dominant exit channel to Rydberg state photoexcitation at these lower energies.
Read full abstract