Visible light is a universal and user-friendly excitation source; however, its use to generate persistent luminescence (PersL) in materials remains a huge challenge. Herein, the concept of intermolecular charge transfer (xCT) is applied in typical host-guest molecular systems, which allows for a much lower energy requirement for charge separation, thus enabling efficient charging of near-infrared (NIR) PersL in organics by visible light (425-700nm). Importantly, NIR PersL in organics occurs via the trapping of electrons from charge-transfer aggregates (CTAs) into constructed trap states with trap depths of 0.63-1.17eV, followed by the detrapping of these electrons by thermal stimulation, resulting in a unique light-storage effect and long-lasting emission up to 4.6 h at room temperature. The xCT absorption range is modulated by changing the electron-donating ability of a series of acenaphtho[1,2-b]pyrazine-8,9-dicarbonitrile-based CTAs, and the organic PersL is tuned from 681 to 722nm. This study on xCT interaction-induced NIR PersL in organic materials provides a major step forward in understanding the underlying luminescence mechanism of organic semiconductors and these findings are expected to promote their applications in optoelectronics, energy storage, and medical diagnosis.