Traditional sound source localization (SSL) systems based on electret condenser microphone arrays are bulky because their localization accuracy depends on the size of the array. Inspired by the hearing mechanism of the parasitic fly Ormia ochracea, the localization accuracy of miniature bionic SSL devices breaks through the limitations of device size, but their ability to localize low-frequency sound sources over a wide angular range remains a challenge. In this work, a compact low-frequency SSL system with an extended directional range was prepared using two bionic micro-electro-mechanical system diaphragm based fiber-optic microphones, which form a non-coplanar array with a size of Φ44 mm × 13 mm. An algorithm for quantifying the azimuthal angle of a sound source is established for the prepared SSL system. Simulation and experimental results show that the prepared SSL system is capable of determining the propagation direction of acoustic signals with a frequency of less than 1 kHz in the azimuthal range from -90° to 90°, with a linear response in the range from -70° to 70°, and an angular measurement accuracy of the system within the range of ±7°.
Read full abstract