The isolated perfused mammalian heart preparation was established in 1897 by Oscar Langendorff. The method was developed on the basis of the isolated perfused frog heart established by Elias Cyon at the Carl Ludwig Institute of Physiology in Leipzig, Germany in 1866. Observations made using both methods at the end of the 19th and at the beginning of the 20th century led to important discoveries, forming the basis for our understanding of heart physiology. This included the role of temperature, oxygen and calcium ions for heart contractile function, the origin of cardiac electrical activity in the atrium, the negative chronotropic effect of vagus stimulation and the chemical transmission of impulses in the vagus nerve by acetylcholine. Langendorff himself demonstrated that the heart receives its nutrients and oxygen from blood via the coronary arteries and that cardiac mechanical function is reflected by changes in the coronary circulation.The method underwent many modifications but its general principle remains the same today. Blood, or more commonly crystalloid perfusates, are delivered into the heart through a cannula inserted in the ascending aorta, either at constant pressure or constant flow. Retrograde flow in the aorta closes the leaflets of the aortic valve and as a consequence, the entire perfusate enters the coronary arteries via the ostia at the aortic root. After passing through the coronary circulation the perfusate drains into the right atrium via the coronary sinus.The simplicity of the isolated mammalian heart preparation, the broad spectrum of measurements which can be done using this method, its high reproducibility and relatively low cost make it a very useful tool in modern cardiovascular and pharmacological research, in spite of a few shortcomings. In the last decade the method has brought many important advances in many areas including ischemia–reperfusion injury, cell-based therapy and donor heart preservation for transplant.
Read full abstract