본 논문은 비정상 상황 시 발생하는 음원에 대해 주변 환경 음에 강인한 음원 구간을 검출하여, 구간내의 신호를 이용한 음원 인식 과 위치 추적 시스템 설계에 관한 연구이다. 강인한 음원 구간 검출은 수신되는 오디오 신호로부터 단 구간 가중 평균 델타 에너지를 계산하여, 저역 통과 필터에 입력 후, 출력되는 결과 값들의 비교를 통해 배경음에 강인한 구간을 정의 하며, 음원 인식은 검출된 구간 내 데이터로부터 종래의 인식 방법인 HMM(: Hidden Markov Model)을 이용해, 음원 인식 정보를 생성하여 학습 및 인식을 한다. 이는 주변 배경음이 포함된 음원 신호에 대해 기존 신호의 에너지를 이용해 구간을 검출 후, HMM을 통한 인식에 비해 3.94% 상향된 인식률을 보인다. 또한 인식 결과를 바탕으로 구간내의 신호간의 TDOA(: Time Delay of Arrival)를 이용한 위치 파악은 실제 발생 위치와의 각도와 97.44%일치함을 보인다. This paper is on a system design of recognizing sound sources and tracing locations from detecting a section of sound sources which is strong in surrounding environmental sounds about sound sources occurring in an abnormal situation by using signals within the section. In detection of the section with strong sound sources, weighted average delta energy of a short section is calculated from audio signals received. After inputting it into a low-pass filter, through comparison of values of the output result, a section strong in background sound is defined. In recognition of sound sources, from data of the detected section, using an HMM(: Hidden Markov Model) as a traditional recognition method, learning and recognition are realized from creating information to recognize sound sources. About signals of sound sources that surrounding background sounds are included, by using energy of existing signals, after detecting the section, compared with the recognition through the HMM, a recognition rate of 3.94% increase is shown. Also, based on the recognition result, location grasping by using TDOA(: Time Delay of Arrival) between signals in the section accords with 97.44% of angles of a real occurrence location.