Sound Field Estimation (SFE) is a numerical technique widely used to identify and reconstruct the acoustic fields radiated by unknown structures. In particular, SFE proves to be useful when data is only available close to the source, but information in the whole space is required. However, the practical implementation of this method is still hindered by two major drawbacks: the lack of efficient implementation of existing numerical methodologies, and the time-consuming and tedious roll-out of acoustic measurements. This paper aims to provide a solution to both issues. First, the measurements step is fully automated by using a robotic arm, able to accurately gather geometric and acoustic data without any human assistance. In this matter, a particular attention has been paid to the impact of the robot on the acoustic pressure measurements. The sound field prediction is then tackled using the Boundary Element Method (BEM), and implemented using the FreeFEM++ BEM library. Numerically simulated measurements have allowed us to assess the method accuracy, and the overall solution has been successfully tested using actual robotized measurements of an unknown loudspeaker.