On the basis of the estimated contributions of these differing methods of the utilization of solar energy, their total energy delivery impact on the projected U.S. energy economy (9) can be evaluated (Fig. 5). Despite this late energy impact, the actual sales of solar energy utilization equipment will be significant at an early date. Potential sales in photovoltaic arrays alone could exceed $400 million by 1980, in order to meet the projected capacity buildup (10). Ultimately, the total energy utilization equipment industry should attain an annual sales volume of several tens of billion dollars in the United States, comparable to that of several other energy related industries. Varying amounts of technology development are required to assure the technical and economic feasibility of the different solar energy utilization methods. Several of these developments are far enough along that the paths can be analyzed from the present time to the time of demonstration of technical and economic feasibility, and from there to production and marketing readiness. After that point, a period of market introduction will follow, which will differ in duration according to the type of market addressed. It may be noted that the present rush to find relief from the current energy problem, or to be an early leader in entering a new market, can entail shortcuts in sound engineering practice, particularly in the areas of design for durability and easy maintenance, or of proper application engineering. The result can be loss of customer acceptance, as has been experienced in the past with various products, including solar water heaters. Since this could cause considerable delay in achieving the expected total energy impact, it will be important to spend adequate time at this stage for thorough development. Two other aspects are worth mentioning. The first is concerned with the economic impacts. Upon reflection on this point, one will observe that largescale solar energy utilization will not cause a greater impact than other new energy sources, based on the reasoning that a self-consistent set of conditions will have to be fulfilled in order to achieve such large-scale use. Without cost competitiveness, other energy resources would fill the requirements, or, if their resource and cost structure also would create severe problems, the economic forecasts simply cannot be fulfilled. We also should not think of a "solar-only" energy future. First, there is still enough coal to last for several hundred years. Second, there should be enough fissionable fuel available to operate breeder reactors for a similar time span, and geothermal energy could satisfy some requirements for a long time. And finally, there may be fusion. It would be unlikely that any one of the available options should play a really dominant role. Rather, we should expect to be using an energy mix, just as we do now, with each energy source supplying the requirements which it can satisfy in the most suitable way, and solar energy should play an important role in this long-range future.