AbstractToday's job market is seeking engineers with competencies to design innovative solutions that meet sophisticated customer needs. Engineering education is then challenged to equip future engineers with holistic engineering design skills, especially functional ones. A powerful means to strengthen these skills is the use of reverse‐engineering‐based activities, which consist of examining, extracting information, and redesigning existing products. However, most current education endeavours, based on reverse engineering, consist only of practicing simple teardowns that have circumscribed impact on the acquisition of skills. Therefore, there is a need for more elaborated authentic hands‐on activities to gain a broad set of design skills. This study addresses this gap by the development of a concept of wide‐ranging engineering activities that start with the study of an existing product and ends with an improved redesigned three‐dimensional (3D) printed product. This concept of activities was developed to strengthen a conventional course on product design. Thus, a tailored comprehensive redesign process is proposed first, and expanded as a concept of a set of experiential activities, with associated measures for skills acquisition. This concept encompasses teardown, 3D digitizing and rapid prototyping, and aims mainly at facilitating the understanding of components' functionalities, the numerical reconstruction by 3D digitizing, the mechanical modelling and engineering analysis of parts and finally the 3D printing of the redesign output. To understand, experience, and weigh up the relevance of the proposed concept of activities, a preliminary implementation, and a case study are illustrated. Particularly, the relevance of the concept is demonstrated through the assessment of the activities' measures. In short, this study provides educators with an authentic education tool that leverages on a broader reverse engineering vision to boost the job's sought‐after design skills.
Read full abstract