In this paper, the influence of the edge effect on the simultaneous reconstruction of axisymmetric flame temperature and soot volume fraction profiles by a single CCD camera was investigated in detail. The reconstruction accuracy of the flame temperature profile and soot volume fraction was insensitive to the measurement error of the coefficient matrix. When the signal to ratio (SNR) of the measurement system for both the radiation intensity and coefficient matrix was as low as 46 dB, the reconstruction accuracy for both temperature and soot volume fraction was acceptable and was more influenced by the radiation intensity measurement error. The reconstruction of the flame temperature and soot volume fraction was greatly influenced by the edge effect. When the flame edge with weak radiation signals was ignored during the reconstruction, the relative reconstruction error for the temperature and soot volume fraction increased from the flame center to the edge, and reached an unacceptable value at the reconstruction boundary, especially for the soot volume fraction. The flame image boundary could be chosen as the unified reconstruction boundary to reconstruct the two-dimensional distribution of the temperature and soot volume fraction with satisfactory accuracy. The low soot volume fraction could influence the reconstruction accuracy for both the temperature and soot concentration in non-sooting regions. Moreover, there was no obvious regularity between the reconstruction accuracy of the temperature and soot volume fraction and the extension of the reconstruction boundary.
Read full abstract