AbstractDry–jet–wet spinning of three copolymers, poly(acrylonitrile/methyl acrylate), poly(acrylonitrile/methacrylic acid), and poly(acrylonitrile/itaconic acid), was performed with a dimethylformamide/water (60:40 v/v) coagulation bath at different temperatures (10–40°C). The fibers were stretched to different levels (1.1–6×) in boiling water, collapsed, and annealed over a heater plate at 130°C. The effects of the polymer composition, coagulation bath temperature, and draw ratio on the cross‐sectional morphology, structure, and tensile properties are reported. The cross‐sectional shape of the gel fibers underwent a transition from a kidney shape to an oval shape, and macrovoids began to appear at higher temperatures. However, F(AN/IA) gel fibers changed from a kidney shape to an irregular shoe type with a gel network of interconnected polymer fibrils. For F(AN/MAA) gel fibers, the diameter increased from 45 to 67 μm when the coagulation bath temperature was increased from 10 to 40°C, and the denier value decreased from 17.5 to 14.3 den/filament. The strength, modulus, and elongation at break decreased with an increase in the coagulation bath temperature. For F(AN/MAA) fibers coagulated at 10°C in a spin bath, the strength increased from 0.43 to 2.213 g/den, the modulus increased from 27 to 76 g/den, and the density increased from 1.177 to 1.196 g cm−3 when the gel fibers were drawn to 6×. However, 6× drawn F(AN/MA) fibers had a higher strength (3.1 g/den) and elongation (14.6%) in a 40°C coagulation bath. F(AN/IA) fibers could be drawn only to a draw ratio of 4× instead of the 6× draw ratio for F(AN/MAA) and F(AN/MA) fibers. Therefore, the final F(AN/IA) fibers exhibited poor mechanical properties (tenacity = 0.81 g/den, modulus = 22 g/den, and elongation at break = 8%). The crystallinity did not change significantly (χc = 61–63%) with the draw ratio, but the crystal size increased from 22.9 to 43.4 Å and orientation factor from 0.41 to 0.78. The dichroic ratio, measured with Fourier transform infrared, decreased with an increase in the draw ratio, but the sonic modulus and crystalline orientation values increased with an increase in the draw ratio. Thermomechanical data show a maximum physical shrinkage of 51.7% for 6× drawn F(AN/MA) and a minimum physical shrinkage of 30.5% for 4× drawn F(AN/IA) fibers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 773–787, 2002
Read full abstract