To study the impact of faults on the enrichment and mobility of shale oil in the Gulong area, representative rock samples were selected in this paper. Based on geochemical data and chemical kinetics methods, coupled with shale oil enrichment and mobility analysis techniques, the shale oil generation quantity and in situ oil content were evaluated from the perspectives of shale oil generation and micro migration, and the mobility of shale oil was revealed. At the same time, the hydrocarbon expulsion efficiency (HEE) of shale was qualitatively and quantitatively characterized, combined with the development of faults. The research results indicate that the study area mainly develops organic-rich felsic (ORF)/organic-containing felsic (OCF) shale, their proportion in both wells exceeds 65%, and the resource amount is the largest in this type of lithofacies. The development of a fault controls the enrichment of shale oil, and the in situ oil content and oil saturation index (OSI) of the shale in well Y58, which is close to the fault, are significantly worse than those in well S2. Well Y58 has 9.52 mg/g and 424.83 mg/g TOC respectively, while well S2 has 11.34 mg/g and 488.73 mg/g TOC respectively. The fault enhanced the migration of shale oil, increasing the efficiency of oil expulsion. As a result, the components with weak polarity or small molecules, such as saturated hydrocarbons and low carbon number n-alkanes, are prone to migration, reducing the mobility of shale oil.