Damage to the primary visual cortex or its afferent white matter tracts results in loss of vision in the contralateral visual field that can present as homonymous visual field deficits. Evidence suggests that visual training in the blind field can partially reverse blindness at trained locations. However, the efficacy of visual training is highly variable across participants, and the reasons for this are poorly understood. It is likely that variance in residual neural circuitry following the insult may underlie the variation among patients. Many stroke survivors with visual field deficits retain residual visual processing in their blind field despite a lack of awareness. Previous research indicates that intact structural and functional connections between the dorsal lateral geniculate nucleus and the human extrastriate visual motion-processing area hMT+ are necessary for blindsight to occur. We therefore hypothesized that changes in this white matter pathway may underlie improvements resulting from motion discrimination training. Eighteen stroke survivors with long-standing, unilateral, homonymous field defects from retro-geniculate brain lesions completed 6 months of visual training at home. This involved performing daily sessions of a motion discrimination task, at two non-overlapping locations in the blind field, at least 5 days per week. Motion discrimination and integration thresholds, Humphrey perimetry and structural and diffusion-weighted MRI were collected pre- and post-training. Changes in fractional anisotropy (FA) were analysed in visual tracts connecting the ipsilesional dorsal lateral geniculate nucleus and hMT+, and the ipsilesional dorsal lateral geniculate nucleus and primary visual cortex. The (non-visual) tract connecting the ventral posterior lateral nucleus of the thalamus and the primary somatosensory cortex was analysed as a control. Changes in white matter integrity were correlated with improvements in motion discrimination and Humphrey perimetry. We found that the magnitude of behavioural improvement was not directly related to changes in FA in the pathway between the dorsal lateral geniculate nucleus and hMT+ or dorsal lateral geniculate nucleus and primary visual cortex. Baseline FA in either tract also failed to predict improvements in training. However, an exploratory analysis showed a significant increase in FA in the distal part of the tract connecting the dorsal lateral geniculate nucleus and hMT+, suggesting that 6 months of visual training in chronic, retro-geniculate strokes may enhance white matter microstructural integrity of residual geniculo-extrastriate pathways.