The widespread use of silver nanoparticles in many industries is increasing every year. Along with this use, there is growing concern about the potential unintentional exposure of human and animal organisms to these nanomaterials. It has been shown that AgNPs have the ability to penetrate organisms and can have harmful effects on cells and organs in the body. In order to reduce the effects of AgNPs on living organisms, newer solutions are being investigated, such as particle stabilization or other methods of synthesizing these particles. The physical synthesis of AgNPs using high-voltage arc discharge (HVAD) may be one of these alternatives. To determine the effect of silver nanoparticles obtained by this method, cytogenetic analysis was performed on domestic dog somatic cells using a cytokinesis-blocking micronucleus assay. In the experiments performed, peripheral blood cells of the domestic dog were exposed in vitro for 3 and 24 h to three tested colloidal silver compounds (unstable AgNP-HVAD, sodium citrate-stabilized silver nanoparticles—AgNP+C, and silver nitrate). The toxicity of these compounds was evaluated at concentrations of 5, 10, and 20 µg/L, and the presence of the following cellular abnormalities was analyzed: micronuclei, nuclear buds, nucleoplasmic bridges, or multinucleated cells. The study showed a significant increase in the number of micronuclei compared to the control sample, as well as the presence of nuclear buds and nucleoplasmic bridges in somatic cells of the domestic dog, confirming the genotoxic nature of the particles. However, there was no cytotoxic effect due to the lower number of multinucleated cells and the absence of apoptotic or necrotic cells in the samples analyzed. Further studies are needed to better understand the mechanisms of toxicity of AgNPs produced by the HVAD method and the extent of their effects on mammalian somatic cells.
Read full abstract