Abstract

Meiosis is a highly conserved specialized cell division process that generates haploid gametes. Many of its events are associated with dynamically regulated chromosomal structures and chromatin remodeling, which are mainly modulated by histone modifications. Histone H1 is a linker histone essential for packing the nucleosome into higher-order structures, and H1FOO (H1 histone family, member O, oocyte-specific) is a H1 variant whose expression pattern is restricted to growing oocytes and zygotes. To further explore the function of H1FOO, we generated mice lacking the H1foo gene by the CRISPR/Cas9 technique. Herein, we combine mouse genetics and cellular studies to show that H1foo-null mutants have no overt phenotype, with both males and females being fertile and presenting no gross defects in meiosis progression nor in synapsis dynamics. Accordingly, the histological sections show a normal development of gametes in both male and female mice. Considering the important role of oocyte constituents in enhancing mammalian somatic cell reprogramming, we analyzed iPSCs generation in H1foo mutant MEFs and observed no differences in the absence of H1FOO. Taken all together, in this work we present the first in vivo evidence of H1FOO dispensability for mouse fertility, clarifying the debate in the field surrounding its essentiality in meiosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.