Yield components of potato are largely affected by the physiology age of the tuber seeds at planting. The current study focuses on monitoring seed tuber aging in two CN1 and CN2 somatic hybrid lines and Spunta (Sp) variety during 270 days of storage at 4 °C. Aging rate was monitored based on sprouting, emergence and tissue oxidation rates. Investigation of sprouting parameters such as physiological age index (PAI) considering physiological and chronological age and the incubation period (IP) indicated lower physiological age in hybrids than in Sp during the storage. Moreover, these analyses showed that off-seasonal growing conditions increased the aging, more clearly, in Sp tubers than in hybrid ones. However, dormancy periods (endodormancy and after storage dormancy) were equivalent in the different tuber lots. PAI and IP data when combined with those from emergence parameters (duration until emergence and stem number) seem more efficient for the characterization of the different potato lines. However, emergence indicators, when considered separately, were not able to distinguish clearly between seasonal and off-seasonal tubers. Data suggest that hybrid seeds exhibited high performances since they produced higher stem number per plant than Sp. The high aging rate in Sp tubers seems to be associated with the few developed stems. Biochemical analyses supported in part morphophysiological differences between hybrids and Sp seeds although these indicators seem more sensitive to aging. Indeed data showed that the dormancy break, and then, the development were associated with some level of tissue oxidation. Antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and carotenoids seem more enhanced after the release of dormancy. However, induction of these activities started earlier in off-seasonal tubers than in seasonal ones, this was consistent with their advanced aging level revealed by PAI and IP data. Activation of these antioxidants appears to respond effectively to the increase of ROS suggesting a better control of postharvest development and tissue deterioration especially in CN2 off-seasonal tubers. This study suggests that CN2 followed by CN1 exhibited the best performance compared to Sp variety.
Read full abstract