The aim of the present study was to analyze the neurochemical properties of the centrifugal visual system (CVS) of the quail using an immunohistochemical approach by testing 16 neuropeptides (angiotensin: ANG, bradykinin: BK, cholecystokinin, dynorphin, L and M-enkephalin, β-endorphin: β-END, galanin, α-neoendorphin, neurokinin A, neuropeptide Y (NPY), ocytocin, somatostatin, substance P, vasopressin, vasoactive intestinal polypeptide) and three neurotransmitters or their synthetic enzymes (choline acetyltransferase: ChAT, tyrosine hydroxylase: TH, serotonin: 5-HT and nitric oxide synthase: NOS, including the histochemical nicotinamide adenine dinucleotide phosphate diaphorase technique). For each substance, the somatic and afferent fiber and terminal labeling was analyzed within the nucleus isthmo-opticus (NIO) and the ectopic area (EA) and compared with that of retinopetal cell bodies labeled retrogradely with RITC following its intraocular injection (double-labeling procedure). The results showed that none of the centrifugal neurons were reactive to any of the substances tested. In contrast, all with the exception of ANG, BK and β-END, labeled fibers and terminals within the EA and only four (ChAT, 5-HT, NPY and NOS) within the NIO. Possible sources of these immunoreactive fibers terminating in the NIO and EA were investigated by mapping the somatic immunolabeling of the different substances within brainstem regions previously shown by Miceli and other authors to project upon the centrifugal neurons. The data suggests that, besides the rapid retino-tecto-NIO-retinal loop, which facilitates the transfer of meaningful or more relevant information within particular portions of the visual field, the multiple afferent input which stems from various brainstem regions utilizes a wide range of neuroactive substances. Some of these afferent projections upon the centrifugal neurons appear to belong to nonspecific systems which might play a role in modulating the excitability of centrifugal neurons as a function of arousal.