Patient-specific finite element analysis (FEA) holds great promise in advancing the prognosis of cardiovascular diseases by providing detailed biomechanical insights such as high-fidelity stress and deformation on a patient-specific basis. Albeit feasible, FEA that incorporates three-dimensional, complex patient-specific geometry can be time-consuming and unsuitable for time-sensitive clinical applications. To mitigate this challenge, machine learning (ML) models, e.g., deep neural networks (DNNs), have been increasingly utilized as potential alternatives to finite element method (FEM) for biomechanical analysis. So far, efforts have been made in two main directions: (1) learning the input-to-output mapping of traditional FEM solvers and replacing FEM with data-driven ML surrogate models; (2) solving equilibrium equations using physics-informed loss functions of neural networks. While these two existing strategies have shown improved performance in terms of speed or scalability, ML models have not yet provided practical advantages over traditional FEM due to generalization issues. This has led us to the question: instead of abandoning or replacing the traditional FEM framework that can reliably solve biomechanical problems, can we integrate FEM and DNNs to enhance performance?In this study, we propose a synergistic integration of DNNs and FEM to overcome their individual limitations. Using biomechanical analysis of the human aorta as the test bed, we demonstrated two novel integrative strategies in forward and inverse problems. For the forward problem, we developed DNNs with state-of-the-art architectures to predict a nodal displacement field, and this initial DNN solution was then updated by a FEM-based refinement process, yielding a fast and accurate computing framework. For the inverse problem of heterogeneous material parameter identification, our method employs DNN as a regularizer of the spatial distribution of material parameters, aiding the optimizer in locating the optimal solution. In our demonstrative examples, despite that the DNN-only forward models yielded small displacement errors in most test cases; stress errors were considerably large, and for some test cases, the peak stress errors were greater than 50%. Our DNN-FEM integration eliminated these non-negligible errors in DNN-only models and was magnitudes faster than the FEM-only approach. Additionally, compared to FEM-only inverse method with errors greater than 50%, our DNN-FEM inverse approach significantly improved the parameter identification accuracy and reduced the errors to less than 1%.
Read full abstract