Abstract
The topic of iterative substructuring methods, and more generally domain decomposition methods, has been extensively studied over the past few years, and the topic is well advanced with respect to first and second order elliptic problems. However, relatively little work has been done on more general constrained least squares problems (or equivalent formulations) involving equilibrium equations such as those arising, for example, in realistic structural analysis applications. The potential is good for effective use of iterative algorithms on these problems, but such methods are still far from being competitive with direct methods in industrial codes. The purpose of this paper is to investigate an order reducing, preconditioned conjugate gradient method proposed by Barlow, Nichols and Plemmons for solving problems of this type. The relationships between this method and nullspace methods, such as the force method for structures and the dual variable method for fluids, are examined. Convergence properties are discussed in relation to recent optimality results for Varga's theory ofp-cyclic SOR. We suggest a mixed approach for solving equilibrium equations, consisting of both direct reduction in the substructures and the conjugate gradient iterative algorithm to complete the computations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.