The advancement of green chemistry and sustainable chemical processes has been significantly facilitated by catalytic systems derived from plant roots, which also present substantial application prospects in the realm of chemical synthesis. This study utilized the roots of Rhizoma Coptidis as a support to successfully fabricate a silver-based nanocatalyst. By depositing silver nanoparticles onto the root material of Coptis chinensis and subjecting it to carbonization, a silver/carbon composite was synthesized, featuring monodisperse silver nanoparticles and a hierarchical mesoporous carbon framework. This composite exhibits robust surface activity, a well-defined pore structure, and superior mechanical properties. The catalyst achieves a catalytic yield nearing 90%, showcasing remarkable activity in terminal alkyne halogenation reactions. Its stability and recyclability are markedly enhanced; it retains 95% of its mass and remains unaltered in the reaction solvent for over 160 h after five cycles. This method simplifies the synthesis of terminal alkynes and their derivatives, rendering the process more environmentally benign and efficacious. Furthermore, it broadens the potential applications of Rhizoma Coptidis in synthetic chemistry and pioneers a novel approach for the synthesis of precious metal catalysts from renewable resources.
Read full abstract