The article is devoted to studying one of the sections of nonclassical differential equations, namely, matters concerned with solvability of parabolic equations with changing second-order time direction. As is known, in ordinary boundary-value problems for strictly parabolic equations, the smoothness of the initial and boundary conditions completely ensures that the solutions belong to the Holder spaces, but in the case of equations with changing time direction, the smoothness of the initial and boundary conditions does not ensure that the solutions belong to these spaces. S.A. Tersenov (for a model parabolic equation with changing time direction) and S.G. Pyatkov (for a more general second-order equation) obtained the necessary and sufficient conditions for solvability of the corresponding mixed problems in Holder spaces. In so doing, they always assumed the initial and boundary conditions being equal to zero. Cases in which the initial and boundary conditions belong to Banach spaces are considered. The functional spaces in which the solutions must be sought are introduced. Relevant a priori estimates, which make it possible to obtain the solvability conditions for these problems, are obtained. The properties of the obtained solutions have been studied. In particular, the equivalence of the Riesz and Littlewood-Paley conditions similar to the conditions for solutions of strictly elliptic and strictly parabolic second order equations is established. A unique solvability of the first mixed problem with boundary and initial functions from the Banach space has been proved.
Read full abstract