Abstract
In a Banach space E, the Cauchy problem $$ \upsilon^{\prime }(t)+A(t)\upsilon (t)=f(t)\kern1em \left(0\le t\le 1\right),\kern1em \upsilon (0)={\upsilon}_0, $$ is considered for a differential equation with linear strongly positive operator A(t) such that its domain D = D(A(t)) does not depend on t and is everywhere dense in E and A(t) generates an analytic semigroup exp{−sA(t)}(s ≥ 0). Under natural assumptions on A(t), we prove the coercive solvability of the Cauchy problem in the Banach space $$ {C}_0^{\beta, \upgamma} $$ (E). We prove a stronger estimate for the solution compared with estimates known earlier, using weaker restrictions on f(t) and v0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.