Stability of rocks is the main requirement for the safe operation of mines. For this purpose, certain measures are applied for the protection and support of underground openings, including roof support design and roof arrangement in the most stable rocks. Stability assessment of underground excavations is largely related to their roof stability. Determination of possible instability conditions in mine roofs governs the choice of support system design and parameters of mine excavations. The Upper Kama Potash Salt Deposit represents a stratified layer of solid salt rocks. Roof instability develops as stratification and roof collapse. The Mohr–Coulomb criterion of coherent rocks is currently used to estimate parameters of a possible damage zone in the exposed roof. This criterion allows evaluating shear plane angles in roof rocks and, as a result, finding parameters of the possible collapse zone. The experience of mining operations in the Upper Kama deposit shows different failure conditions as against the Mohr–Coulomb criterion as the stress state is scarcely included in the criterion used. This study is an attempt to assess parameters of rock exposures by solving a Lame problem in terms of a single mine excavation. The analytical results were compared with the parameters obtained from the plane elasticity solutions by the finite element method. Based on the implemented studies, an engineering approach is developed for the assessment of anticipated instability parameters in exposed roofs in horizontal excavations driven in salt rocks.