Abstract

The plane stress problem of beams is a typical one in elasticity theory. In this paper a new set of boundary conditions for the fixed end is proposed to improve the accuracy of the plane elasticity solution for beams with fixed end(s). Plane elasticity solutions are then derived for the cantilever beam, propped cantilever beam, and fixed-fixed beam. The new set of boundary conditions is constructed by combining two conventional ones with a parameter. The parameters for different kinds of beams are determined by minimizing the square sum of the longitudinal displacements through the thickness of the fixed end. Comparison with the results obtained by the finite element method (FEM) shows the efficiency of the new type of boundary conditions. When the beam is a deep one, it is found that different boundary conditions yield different errors, and the elasticity solution obtained by the new boundary conditions best approaches the FEM results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call