In this study, solutions of random complex partial differential equations were found using the two-dimensional Sumudu transformation method(STM). The initial conditions of a deterministic equation or the non-homogeneous part of the equation are transformed into random variables to obtain a random complex partial differential equation. With the help of the properties of two-dimensional Sumudu and inverse Sumudu transformation, an approximate analytical solution of a complex partial differential equation with random constant coefficients was obtained by selecting a random variable with an initial condition of Normal and Gamma distribution. The probability characteristics of the resulting solutions, such as expected value and variance, were obtained and graphically shown with the help of the Maple package program.