Currently, the highest cancer death rate in Korea is lung cancer, which is a typical cancer that is difficult to detect early. Low-dose chest CT is being used for early detection, which has a greater lung cancer diagnosis rate of about three times than regular chest x-ray images. However, low-dose chest CT not only significantly reduces image resolution but also has a weak signal and is sensitive to noise. Also, air filled lungs are low-density organs and the presence of noise can significantly affect early diagnosis of cancer. This study used Visual C++ to set a circle inside a large circle with a density of 2.0, with a density of 1.0, which is the density of water, in which five small circle of mathematics have different densities. Gaussian noise was generated by 1%, 2%, 3%, and 4% respectively to determine the effect of noise on the mean value, the standard deviation value, and the relative noise ratio(SNR). In areas where the density difference between the large and small circles was greatest in the event of 1 % noise, the SNR in the area with the greatest variation in noise was 4.669, and in areas with the lowest density difference, the SNR was 1.183. In addition, the SNR values can be seen to be high if the same results are obtained for both positive and negative densities. Quality was also clearly visible when the density difference was large, and if the noise level was increased, the SNR was reduced to significantly affect the noise. Low-density organs or organs in areas of similar density to cancers, will have significant noise effects, and the effects of density differences on the probability of noise will affect diagnosis.