It is widely believed that the aggregation of amyloid β (Aβ) peptides into soluble oligomers is the root cause behind Alzheimer's disease. In this study, we have performed room-temperature molecular dynamics (MD) simulations of aggregated Aβ oligomers of different sizes (pentamer (O(5)), decamer (O(10)), and hexadecamer (O(16))) in binary aqueous solutions containing 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) ionic liquid (IL). Investigations have been carried out to obtain a microscopic understanding of the effects of the IL on the dynamic environment around the exterior surfaces and within the confined nanocores of the oligomers. The calculations revealed that in contrast to nearly uniform dynamics near the exterior surface, heterogeneous structural distortions of oligomers of varying sizes and nonuniform distributions of water and IL components within their core volumes modify the core dynamics in a differential manner. It is demonstrated that increasingly restricted mobility of water and IL components is the origin behind the longer time scale of dynamic heterogeneity in and around the oligomers. Importantly, due to the equivalent nondirectional nature of the B-F bonds, BF4- anions are found to reorient on a time scale faster than that of water molecules. Further, the structural relaxation of protein-anion (PA) hydrogen bonds around the oligomers has been found to be correlated with sluggish translational motions of the anions but anticorrelated with their reorientational time scale. In addition, it is quantified that compared to the pure aqueous medium, strengthening of protein-water (PW) hydrogen bonds in the presence of the IL leads to their longer lifetimes.
Read full abstract