AbstractThe redundant manipulators have more DOFs (degree of freedoms) than it requires to perform specified task. The inverse kinematic (IK) of such robots are complex and high nonlinear with multiple solutions and singularities. As such, modern Artificial Intelligence (AI) techniques have been used to address these problems. This study proposed two AI techniques based on Neural Network Genetic Algorithm (NNGA) and Particle Swarm Optimization (PSO) algorithm to solve the inverse kinematics (IK) problem of 3DOF redundant robot arm. Firstly, the forward kinematics for 3 DOF redundant manipulator has been established. Secondly, the proposed schemes based on NNGA and PSO algorithm have been presented and discussed for solving the inverse kinematics of the suggested robot. Thirdly, numerical simulations have been implemented to verify the effectiveness of the proposed methods. Three scenarios based on triangle, circular, and sine-wave trajectories have been used to evaluate the performances of the proposed techniques in terms of accuracy measure. A comparison study in performance has been conducted and the simulated results showed that the PSO algorithm gives 7% improvement compared to NNGA technique for triangle trajectory, while 2% improvement has been achieved by the PSO algorithm for circular and sine-wave trajectories.