Abstract
In robotics, inverse kinematics problem solution is a fundamental problem in robotics. Many traditional inverse kinematics problem solutions, such as the geometric, iterative, and algebraic approaches, are inadequate for redundant robots. Recently, much attention has been focused on a neural-network-based inverse kinematics problem solution in robotics. However, the result obtained from the neural network requires to be improved for some sensitive tasks. In this paper, a neural-network committee machine (NNCM) was designed to solve the inverse kinematics of a 6-DOF redundant robotic manipulator to improve the precision of the solution. Ten neural networks (NN) were designed to obtain a committee machine to solve the inverse kinematics problem using separately prepared data set since a neural network can give better result than other ones. The data sets for the neural-network training were prepared using prepared simulation software including robot kinematics model. The solution of each neural network was evaluated using direct kinematics equation of the robot to select the best one. As a result, the committee machine implementation increased the performance of the learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.