Abstract
The neural-network-based inverse kinematics solution is one of the recent topics in the robotics because of the fact that many traditional inverse kinematics problem solutions such as geometric, iterative and algebraic are inadequate for redundant robots. However, since the neural networks work with an acceptable error, the error at the end of inverse kinematics learning should be minimized. In this study, simulated annealing (SA) algorithm was used together with the neural-network-based inverse kinematics problem solution robots to minimize the error at the end effector. The solution method is applied to Stanford and Puma 560 six-joint robot models to show the efficiency. The proposed algorithm combines the characteristics of neural network and an optimization technique to obtain the best solution for the critical robotic applications. Three Elman neural networks were trained using separate training sets and different parameters, since one of them can give better results than the others can. The best result is selected within three neural network results by computing the end effector error via direct kinematics equation of the robotic manipulator. The decimal part of the neural network result was improved up to 10 digits using simulated annealing algorithm. The obtained best solution is given to the simulated annealing algorithm to find the best-fitting 10 digits for the decimal part of the solution. The end effector error was reduced significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.