This study introduces an innovative neural network framework named spectral integrated neural networks (SINNs) to address both forward and inverse dynamic problems in three-dimensional space. In the SINNs, the spectral integration technique is utilized for temporal discretization, followed by the application of a fully connected neural network to solve the resulting partial differential equations in the spatial domain. Furthermore, the polynomial basis functions are employed to expand the unknown function, with the goal of improving the performance of SINNs in tackling inverse problems. The performance of the developed framework is evaluated through several dynamic benchmark examples encompassing linear and nonlinear heat conduction problems, linear and nonlinear wave propagation problems, inverse problem of heat conduction, and long-time heat conduction problem. The numerical results demonstrate that the SINNs can effectively and accurately solve forward and inverse problems involving heat conduction and wave propagation. Additionally, the SINNs provide precise and stable solutions for dynamic problems with extended time durations. Compared to commonly used physics-informed neural networks, the SINNs exhibit superior performance with enhanced convergence speed, computational accuracy, and efficiency.
Read full abstract