Abstract
We develop a tractable and flexible data-driven approach for incorporating side information into multi-stage stochastic programming. The proposed framework uses predictive machine learning methods (such as k-nearest neighbors, kernel regression, and random forests) to weight the relative importance of various data-driven uncertainty sets in a robust optimization formulation. Through a novel measure concentration result for a class of supervised machine learning methods, we prove that the proposed approach is asymptotically optimal for multi-period stochastic programming with side information. We also describe a general-purpose approximation for these optimization problems, based on overlapping linear decision rules, which is computationally tractable and produces high-quality solutions for dynamic problems with many stages. Across a variety of multi-stage and single-stage examples in inventory management, finance, and shipment planning, our method achieves improvements of up to 15% over alternatives and requires less than one minute of computation time on problems with twelve stages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.