In this Note, we discuss the numerical solution of a system of Eikonal equations with Dirichlet boundary conditions. Since the problem under consideration has infinitely many solutions, we look for those solutions which are nonnegative and of maximal (or nearly maximal) L 1-norm. The computational methodology combines penalty, biharmonic regularization, operator splitting, and finite element approximations. Its practical implementation requires essentially the solution of cubic equations in one variable and of discrete linear elliptic problems of the Poisson and Helmholtz type. As expected, when the spatial domain is a square whose sides are parallel to the coordinate axes, and when the Dirichlet data vanishes at the boundary, the computed solutions show a fractal behavior near the boundary, and particularly, close to the corners. To cite this article: B. Dacorogna et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).
Read full abstract