Developing conductive hydrogels with both high strength and fracture toughness for diverse applications remains a significant challenge. In this work, an efficient toughening strategy is presented that exploits the multiple enhancement effects of anions through a synergistic combination of mineralization, salting-out, and ion coordination. The approach centers on a hydrogel system comprising two polymers and a cation that is highly responsive to anions. Specifically, polyvinyl alcohol (PVA) and chitosan quaternary ammonium (HACC) are used, as PVA benefits from salting-out effects and HACC undergoes ion coordination with multivalent anions. After just 1 h of immersion in an anionic solution, the hydrogel undergoes a dramatic improvement in mechanical properties, increasing by more than three orders of magnitude. The optimized hydrogel achieves high strength (26 MPa), a high Young's modulus (45 MPa), and remarkable fracture toughness (67.3 kJ m-2), representing enhancements of 860, 3200, and 1200 times, respectively, compared to its initial state. This breakthrough overcomes the typical trade-off between stiffness and toughness. Additionally, the ionic conductivity of the hydrogel enables reliable strain sensing and supports the development of durable supercapacitors. This work presents a simple and effective pathway for developing hydrogels with exceptional strength, toughness, and conductivity.
Read full abstract