Abstract. Laboratory experiments were carried out in a vertical wind tunnel to study the retention of different atmospheric trace gases during riming. In the experiments, the rimed ice particles floated in a laminar air stream carrying a cloud of supercooled droplets with radii between 10 and 20 μm. Ice particles, dendritic ice crystals, and snow flakes with diameters between 6 mm and 1.5 cm were allowed to rime at temperatures between −5 and −12 °C where riming mainly proceeds in the atmosphere and with cloud liquid water contents between 1 and 1.5 g m−3 which are values typically found in atmospheric mixed-phase clouds. Three trace species were investigated, nitric and hydrochloric acid, and hydrogen peroxide. They were present in the supercooled liquid droplets in concentrations from 1 to 120 ppmv, i.e. similar to the concentrations measured in cloud drops. The chemical analyses of the rimed ice particles allow one to determine the trace species concentration in the ice phase. Together with the known liquid phase concentration the retention coefficients were calculated in terms of the amount of the species which remained in the ice phase after freezing. It was found that the highly soluble trace gases, nitric and hydrochloric acid, were retained nearly completely (98.6±8% and 99.7±9%, respectively) while for hydrogen peroxide a retention of 64.3±11% was determined. No influence of the riming temperature on the retention was found which can be explained by the fact that in the observed range of temperature and liquid water content, riming proceeded in the dry growth regime.