AbstractThe degradation and formation of inositol phosphates as affected by microbial phytase and gastrointestinal enzyme activities during the passage of phytate through the stomach and small intestine were studied in two experiments with four barrows and three collection periods. The degradation and formation of inositol phosphates were measured at the duodenal and ileal sites using Cr‐NDR, TiO2and Co‐EDTA as indigestible markers. In experiment 1, the effect of graded doses ofAspergillus nigerphytase (0, 150 and 900 FTU Natuphos®kg−1), added to a maize–soybean meal‐based diet with very low intrinsic phytase activity on the degradation of phytate and the formation of inositol phosphates during digestion in the stomach and small intestine was investigated. In experiment 2, three different mixtures of inositol phosphates, produced byAspergillus nigerphytase, containing mainly high, intermediate and low phosphorylated inositol phosphates, were added to the same maize–soybean meal‐based diet as used in experiment I. The fate of the inositol phosphates during digestion in the stomach and small intestine was studied. Experiment 1 showed that the extent of phytate degradation was dependent of the graded dietary phytase activities. At high phytase activity (900 FTU kg−1of diet), strong phytate degradation occurred and the once hydrolysed phytate was rapidly dephosphorylated to lower inositol phosphates (mainly inositol di‐ and triphosphates). Intermediate inositol phosphates, such as inositol tetraphosphates, were quantitatively unimportant in duodenal and ileal digesta. At a phytase activity of 150 FTU kg−1of diet, a broader spectrum of intermediate inositol phosphates was determined, which was probably due to a slower breakdown of phytate. Experiment 2 showed as a predominant result that lower inositol phosphates such InsP4and InsP3were degraded, whereas InsP2accumulated in the duodenal and ileal digesta. No substantial disappearance of phytate from the stomach and small intestine was found when high concentrations of soluble phytate were added to the diet, which indicates that no substantial phytate absorption occurs in the upper part of the pig gut. Copyright © 2005 Society of Chemical Industry
Read full abstract